Quantum Dots for Entanglement-based Quantum Key Distribution (QD-E-QKD) is a multidisciplinary project bringing together experts in quantum optics, solid state physics, quantum key distribution and quantum communication.
The project is funded within the QuantERA II Programme that has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant Agreement No 101017733.
Motivation and vision: Entanglement is a fundamental ingredient for extending quantum key distribution from two-party communication to networks without trusted nodes. Yet, the commercial application of this concept is currently hindered by the probabilistic nature of the photon-generation process underlying the used entanglement resources. QD-E-QKD will develop a novel technology based on semiconductor quantum dots and test it in realistic urban communication scenarios to surpass the limits of current approaches to entanglement-based quantum key distribution.
Armando Rastelli
Johannes Kepler University / Institute of Semiconductor & Solid State Physics, Austria
Stefano Bonora
CNR/INFN Padova, Italy
Thomas Scheidl
Martin Bohmann
Quantum Technology Laboratories GmbH, Austria
Vladyslav Usenko
Palacký University, Olomouc, Faculty of Science, Czech Republic
Tobias Huber-Loyola
Julius Maximilian Universität Würzburg / Technische Physik, Germany
Henning Weier
Quantum Space Systems GmbH, Hausham, Germany
Consortium coordinator (PI): Rinaldo Trotta
Coordination of technical activities: Francesco Basso Basset
Sapienza University of Rome, Physics Department, Italy
The project started on 01/06/2022 and the on-line kick-off meeting took place on 04/07/2022
The in-person-kick-off meeting took place on 26/10/2022 at the Department of Physics of Sapienza University of Rome.
1) M. B. Rota, T. M Krieger, Q. Buchinger, M. Beccaceci, J. Neuwirth, H. Huet, N. Horová, G. Lovicu, G. Ronco, S. F Covre da Silva, G. Pettinari, M. Moczała-Dusanowska, C. Kohlberger, S. Manna, S. Stroj, J. Freund, X. Yuan, C. Schneider, M. Ježek, S. Höfling, F. Basso Basset, T. Huber-Loyola, A. Rastelli, and Rinaldo Trotta
A source of entangled photons based on a cavity-enhanced and strain-tuned GaAs quantum dot
2) F. Basso Basset, M. B. Rota , M. Beccaceci, T. M. Krieger, Q. Buchinger, J. Neuwirth, H. Huet, S. Stroj, S. F. Covre da Silva, C. Schimpf, S. Hoefling, T. Huber-Loyola, A. Rastelli, and R. Trotta
Signatures of the Optical Stark Effect on Entangled Photon Pairs from Resonantly-Pumped Quantum Dots
Phys. Rev. Lett. 131, 166901 (2023)
3)Buchinger, Q., Betzold, S., Höfling, S. & Huber-Loyola, T.
Optical properties of circular Bragg gratings with labyrinth geometry to enable electrical contacts
Appl. Phys. Lett. 122, 111110 (2023)
4)T. Seidelmann, C. Schimpf, T. K. Bracht, M. Cosacchi, A. Vagov, A. Rastelli, D. E. Reiter, and V. M. Axt
Two-Photon Excitation Sets Limit to Entangled Photon Pair Generation from Quantum Emitters
Phys. Rev. Lett. 129, 193604 (2022)
5)Barbara Ursula Lehner, Tim Seidelmann, Gabriel Undeutsch, Christian Schimpf, Santanu Manna, Michał Gawełczyk, Saimon Filipe Covre da Silva, Xueyong Yuan, Sandra Stroj, Doris E. Reiter, Vollrath Martin Axt, and Armando Rastelli
Beyond the Four-Level Model: Dark and Hot States in Quantum Dots Degrade Photonic Entanglement
6)T. Seidelmann, T. K. Bracht, B. U. Lehner, C. Schimpf, M. Cosacchi, M. Cygorek, A. Vagov, A. Rastelli, D. E. Reiter, and V. M. Axt
Two-photon excitation with finite pulses unlocks pure dephasing-induced degradation of entangled photons emitted by quantum dots
Phys. Rev. B 107, 235304 (2023)
7)Xueyong Yuan, Saimon F. Covre da Silva, Diana Csontosová, Huiying Huang, Christian Schimpf, Marcus Reindl, Junpeng Lu, Zhenhua Ni, Armando Rastelli, and Petr Klenovský
GaAs quantum dots under quasiuniaxial stress: Experiment and theory
Phys. Rev. B 107, 235412 (2023)
8)Christian Schimpf, Francesco Basso Basset, Maximilian Aigner, Wolfgang Attenender, Laia Ginés, Gabriel Undeutsch, Marcus Reindl, Daniel Huber, Dorian Gangloff, Evgeny A. Chekhovich, Christian Schneider, Sven Höfling, Ana Predojević, Rinaldo Trotta, and Armando Rastelli
Hyperfine interaction limits polarization entanglement of photons from semiconductor quantum dots
Phys. Rev. B 108, L081405 (2023)
9)Tobias M. Krieger, Christian Weidinger, Thomas Oberleitner, Gabriel Undeutsch, Michele B. Rota, Naser Tajik, Maximilian Aigner, Quirin Buchinger, Christian Schimpf, Ailton J. Garcia Jr., Saimon F. Covre da Silva, Sven Höfling, Tobias Huber-Loyola, Rinaldo Trotta, Armando Rastelli
Post-fabrication tuning of circular Bragg resonators for enhanced emitter-cavity coupling
10)Giora Peniakov, Quirin Buchinger, Mohamed Helal, Simon Betzold, Yorick Reum, Michele B. Rota, Giuseppe Ronco, Mattia Beccaceci, Tobias M. Krieger, Saimon F. Covre Da Silva, Armando Rastelli, Rinaldo Trotta, Andreas Pfenning, Sven Hoefling, Tobias Huber-Loyola
Polarized and Un-Polarized Emission from a Single Emitter in a Bullseye Resonator
11)Alessandro Laneve, Michele B. Rota, Francesco Basso Basset, Nicola P. Fiorente, Tobias M. Krieger, Saimon F. Covre da Silva, Quirin Buchinger, Sandra Stroj, Sven Hoefling, Tobias Huber-Loyola, Armando Rastelli, Rinaldo Trotta, Paolo Mataloni
Experimental Multi-state Quantum Discrimination in the Frequency Domain with Quantum Dot Light
12)Mikolaj Lasota, Olena Kovalenko, Vladyslav C. Usenko
Robustness of entanglement-based discrete- and continuous-variable quantum key distribution against channel noise